
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 8, Issue 2, April - May, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 71

RASPBERRY PI BASED COVID-19 FACE MASK DETECTOR

WITH OPENCV, KERAS/TENSORFLOW AND DEEP

LEARNING
1 Kalangi Balasubramanyam1, 2 S N S Krishna Kanth2, 3 Dontabhaktuni

Jayakumar3
1 Assistant professor, Department of Electronics and Communication Engineering, Swarna Bharathi

Institute of Science & Technology, Khammam, Telangana-507002.
2 Assistant professor, Department of Electrical and Electronics Engineering, Khammam institute of

technology and science, Khammam, Telangana.
3 Assistant professor, Department of Electronics and Communication Engineering, Marri Laxman Reddy

Institute of Technology and Management, Hyderabad- 5000433. Telangana.
, ,

Abstract
 In this paper a Raspberry Pi implementation of COVID-19

face mask detection has been proposed. This is implemented

using Python Programming with OpenCV Library and

keras/TensorFlow (An end-to-end open source machine

learning platform). The main Idea of this Implementation is to

detect the persons without wearing a Face mask in Public

places. The system takes images of people, analyse, detect and

recognize human faces with mask and without mask using

image processing algorithms. The system can serve as a

security or surveillance system in public places like Malls,

Universities, and airports. It can detect and recognize persons

without a face mask in Public places. We’ll use Python script

to train a face mask detector and review the results

Keywords— COVID-19, Face mask detection, face

recognition, raspberry Pi, Python, OpenCV,

Keras/TensorFlow.

I. INTRODUCTION

The main Idea behind this paper is to overcome the Risk

of Spread of COVID-19 to prevent infection and to slow down

the transmission of COVID-19 we need to maintain at least 1

metre distance with people coughing or sneezing, need to

avoid touching our face, so we need to cover our mouth and

nose when coughing or sneezing [10]. So every person need to

wear a Mask to cover face with a Face Mask. So wearing Face

mask is mandatory in this COVID-19 outbreak [9].

Computer-based face detection and recognition systems

are rapidly spreading in various sectors. The goal of this

research is to build an embedded system that can detect and

recognize persons without face mask using image-processing

techniques. Practically, this idea can be implemented in large

places to avoid speeding of COVID-19 virus. The benefits of

this system are:

1. Expand the desired microcontroller capabilities.

2. Implementing Machine Learning algorithms on

microcontrollers and observing results.

3. Implement the face mask detection and recognition

of persons without face mask algorithms to run over

the microcontroller.

II.RELATED WORK

In [1], a face recognition system using Raspberry Pi was

developed. Here author used OpenCV for Face recognition. In

[2], A Real time face detection and Face recognition using

OpenCV on Raspberry Pi was developed. In [3], a Face mask

detection System was Implemented using Python

Programming, OpenCV, Keras and Tensor Flow here the total

process is implemented on Linux System but in this Paper by

taking these references we designed a Microcontroller based

Embedded system to detect a Face Mask using Raspberry pi.

III.RESEARCH METHODOLOGY AND SOLUTION

The purpose of this paper is mainly to implement the face

mask detection and recognition of faces without mask. The

implementation is done by using Raspberry Pi with camera for

capturing images and python programming using OpenCV [4]

library image processing is performed. Keras and TensorFlow

are used for implementing Machine Learning algorithm.

IV.HARDWARE IMPLEMENTATION

The block diagram in Figure1 consists of a pi camera or

web camera that will capture and forward frames to the

Raspberry Pi, the Raspberry Pi then will detect and crop the

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 8, Issue 2, April - May, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 72

faces in this frame and By using Python and TensorFlow it is

Processed, we can observe the Result of machine learning

algorithm on a Monitor connected to Raspberry pi.

Figure 1. General System Block Diagram.

The system works as follows:

• A camera is connected to the Raspberry Pi will

stream live video or Captures Images.

• Faces of people should be detected by Python Script

using OpenCV, and Process them based on the

Script. This is done by implementing detection

algorithm on the Raspberry Pi.

• By using the sample images we train the system by

providing image datasets of with mask and without

mask

• We apply each image to this trained classifier this

algorithm compares the input image with the trained

dataset and we get result on screen.

• If the face mask is detected then it can be shown by

green mark otherwise a red mark is shown on Screen.

V.SOFTWARE IMPLEMENTATION

In this paper, enforced two-phase COVID-19 mask

detector, particularisation however our computer vision/deep

learning pipeline are enforced. From there, we have a

tendency to review the dataset we have a tendency to

victimisation to train our custom mask detector. To implement

this we have a tendency to use Python script to train a mask

detector on our dataset victimisation using Keras and Tensor

Flow. We use this Python script to train a mask detector and

review the results. With this trained COVID-19 mask detector,

we proceed to implement 2 Python scripts used to:

1. Detect COVID-19 face masks in pictures

2. Detect face masks in period video streams

VI.SYSTEM IMPLEMENTATION

The total system is divided into two parts In order to train

a custom face mask detector as shown in figure 2, each with

its own respective sub-steps that is:

1. Training: In this Stage we focus on loading our face

mask detection set of Images from memory and then

we need to train a model using TensorFlow on these

set of Images, and then serializing the face mask

detector to storage.

2. Deployment: After training face mask detector, we

then move on to loading the mask detector,

performing face detection, and then classifying each

face as withmask or withoutmask

In the First Phase By loading facemask dataset we train

the face mask classifier by using keras/TensorFlow and then

we serialize the face mask classifier to memory.

In the Second Phase we load this classifier from memory

and now we apply image or video stream as an input. From

this it extracts each face ROI. By applying face mask

classification to each face ROI we can determine ‘withmask’

or ‘withoutmask’.

Figure 2: System Implementation of COVID-19 face mask detector.

Let’s take a look at the dataset we using to train our COVID-

19 face mask detector.

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 8, Issue 2, April - May, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 73

Figure 3: A face mask detection dataset consists of “withmask” and

“withoutmask” images.

The dataset to build a COVID-19 face mask detector with

computer vision and deep learning using Python, OpenCV and

TensorFlow is shown in figure 3. The above mentioned

dataset consists of 1,376 numbers of images belonging to

following classes:

• withmask: 690 images

• without mask: 686 images

Our aim is to train a custom deep learning model to detect

whether a person is wearing a mask or not. To create this

dataset:

1. Normal images of faces are needed to take.

2. Then we need to add masks by creating a custom

computer vision Python script, thereby creating an

artificial dataset

This method is very easier than it sounds once we apply

facial landmarks to the problem. Facial landmarks allow us to

automatically conclude the location of facial structures,

including:

• Eyes

• Eyebrows

• Nose

• Mouth

• Jaw line

To obtain facial landmarks to build a dataset of faces

wearing face masks, we need to first start with an image of a

person not wearing a face mask as shown in figure 4.

Figure 4: A photograph of someone not wearing a face.

From there, we apply face detection to compute the

bounding box location of the face in the image shown in fig 5:

Figure 5: After applying face detection with OpenCV.

Once we know where in the image the face is, we can

extract the face Region of Interest (ROI).

Figure 6: extract the face ROI with OpenCV and NumPy slicing.

And from there, we apply facial landmarks, allowing us to

localize the eyes, nose, mouth, etc. As shown in below fig 7.

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 8, Issue 2, April - May, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 74

Figure 7: facial landmarks using dlib

Next, we need an image of a mask (with a transparent

background) shown in figure 8.

Figure 8: a COVID-19/Corona virus face mask/shield.

This face mask will be overlaid on the original face ROI

automatically since we know the face landmark locations.

This mask will be automatically applied to the face by using

the facial landmarks (namely the points along the chin and

nose) to compute where the mask will be placed. The mask is

then resized and rotated, placing it on the face which is shown

in figure 9.

Figure 9: Face mask is placed on the person’s Image

It is not an easy task to tell at an instance that the

COVID-19 mask has been applied with computer vision by

way of OpenCV and dlib face landmarks [8]. Then we repeat

this process for all the input images, thereby creating artificial

face mask dataset as shown in Figure 10.

Figure 10: An artificial set of COVID-19 face mask images.

The above set will be subset of our “withmask”/“without

mask” dataset for face mask detection with computer vision

and deep learning using Python, OpenCV, Keras and

TensorFlow.

To implement this following Python scripts are used:

• TrainMaskDetector.py: It accepts input dataset and

fine-tunes MobileNetV2 upon it to create Mask

detector model. A training history plot1.png

containing accuracy and loss curves is also produced

• DetectMaskImage.py: It Performs face mask

detection in static images

• DetectMaskVideo.py: If we used webcam, this script

applies face mask detection to every frame in the

video stream

Now we reviewed our face mask dataset, after that use

Tensor Flow to train a classifier to automatically finds

whether a person is wearing a mask or not. To accomplish this

task, we will be fine-tuning the MobileNet V2 architecture, a

highly efficient architecture that can be applied to embedded

devices with limited computational capacity here I am using

Raspberry Pi, Deploying face mask detector to embedded

devices could reduce the cost of manufacturing such face

mask detection systems, hence why we choose to use this

architecture.

Train_mask_detector.py file, imports for our training

script may look intimidating to our set of TensorFlow. Imports

allow for:

http://www.ijreat.org/
http://www.prdg.org/
https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 8, Issue 2, April - May, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 75

• Data augmentation

• Loading the MobilNetV2 classifier (we will fine-tune

this model with pre-trained ImageNet weights)

• Building a new fully-connected (FC) head

• Pre-processing

• Loading image data we use scikit-learn (sklearn) for

binarizing class labels, segmenting our dataset, and

printing a classification report.

Fine-tuning setup is a three-step process:

1. Load MobileNet with pre-trained ImageNet weights,

leaving off head of network (Lines 88 and 89)

2. Construct a new FC head, and append it to the base

in place of the old head (Lines 93-102)

3. Freeze the base layers of the network (Lines 106 and

107). The weights of these base layers will not be

updated during the process of back propagation,

whereas the head layer weights will be tuned.

Fine-tuning is a strategy always recommends establishing

a baseline model while saving considerable time. With our

data prepared and model architecture in place for fine-tuning,

Figure 11(a): face mask detector training accuracy/loss curves

Figure 11(b): face mask detector training accuracy/loss curves

The above figures 11(a) and (b) shows COVID-19 face

mask detector training accuracy/loss curves demonstrate high

accuracy and little signs of over fitting on the data. We’re now

ready to apply our knowledge of computer vision and deep

learning using Python, OpenCV, and TensorFlow to perform

face mask detection. We can see, we are obtaining ~99%

accuracy on our test set. Looking at Figure 10, we can see

there are little signs of over fitting, with the validation loss

lower than the training loss given these results, we are hopeful

that our model will generalize well to images outside our

training and testing set.

VII.RESULTS

Implementing our COVID-19 face mask detector for

images with OpenCV that is our face mask detector is trained,

let’s learn how we can:

1. Load an input image from disk

2. Detect faces in the image

3. Apply our face mask detector to classify the face as

either with_mask or without_mask

Figure 12: Detecting presence of the mask automatically

The Figure 12 shows is this man wearing a COVID-19

face mask in public? Computer vision and deep learning

method using Python, OpenCV, and TensorFlow has made it

possible to detect the presence of the mask automatically. As

we can see, our face mask detector correctly labeled this

image as Mask.

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 8, Issue 2, April - May, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 76

.

Figure 13: Person not wearing a COVID-19 face mask

From the above figure 13 we can say that the face mask

detection system has correctly detected “No Mask”.

Figure 14: Face Mask Detector Failed to detect person with Mask

In some cases this algorithm will not give correct result

for an example let us consider above figure 14, here the model

was able to detect the faces of the two gentlemen in the

background and correctly classify mask/no mask for them, but

it fails to detect the woman in the foreground. In order to

classify whether a person is wearing a mask or not, we first

need to perform face detection. If a face is not found then the

mask detector cannot be applied. The above image falls under

this category.

The reasons for not detecting the face in the foreground are:

1. It is too obscured by the mask

2. The dataset used to train the face detector did not

contain example images of people wearing face

masks

Therefore, if a large portion of the face is covered by mask,

our face detector will likely fail to detect the face.

VIII.CONCLUSION

As we can see from the results sections above, our face

mask detector is working quite well despite:

1. Having limited training data

2. The with_mask class being artificially generated

To improve our face mask detection model further, we

should gather actual images (rather than artificially generated

images) of people wearing masks. While our artificial dataset

worked well in this case, there’s no substitute for the real

thing.

Secondly, we should also gather images of faces that may

“confuse” our classifier into thinking the person is wearing a

mask when in fact they are not — potential examples include

shirts wrapped around faces, hankie over the mouth, etc.

All of these are examples of something that could be

confused as a face mask by our face mask detector. Finally,

you should consider training a dedicated two-class object

detector rather than a simple image classifier. Our current

method of detecting whether a person is wearing a mask or

not is a two-step process:

1. Step 1: Perform face detection

2. Step 2: Apply our face mask detector to each face

The problem with this approach is that a face mask, by

definition, obscures part of the face. If enough of the face is

obscured, the face cannot be detected, and therefore, the face

mask detector will not be applied. To circumvent that issue,

we should train a two-class object detector that consists of a

withmask class and without mask class. Combining an object

detector with a dedicated withmask class will allow

improvement of the model in two respects.

First, the object detector will be able to naturally detect

people wearing masks that otherwise would have been

impossible for the face detector to detect due to too much of

the face being obscured.

Secondly, this approach reduces our computer vision

pipeline to a single step — rather than applying face detection

and then our face mask detector model, all we need to do is

apply the object detector to give us bounding boxes for people

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 8, Issue 2, April - May, 2020
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 77

both withmask and withoutmask in a single forward pass of

the network.

REFERENCES

[1] Face Recognition Using Raspberry Pi By Biswajit

Das an Article in Electronics for u.com Online

technical documentation. Available at:

https://www.electronicsforu.com/electronicsprojects/

face-recognition-using-raspberry-pi.

[2] Real Time Face Recognition with Raspberry Pi and

OpenCV ByAswinth Raj Online technical

documentation. Available at:

https://circuitdigest.com/microcontrollerprojects/rasp

berry-pi-and-opencv-based-face-recognition-system.

[3] COVID-19: Face Mask Detector with OpenCV,

Keras/TensorFlow, and Deep Learning

https://www.pyimagesearch.com/2020/05/04/covid-

19-face-mask-detector-with-opencv-kerastensorflow-

and-deep-learning/.

[4] T. Shakunaga , and K. Shigenari,"Decomposed

Eigen-Face for face recognition under various

lighting conditions" . IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, 2001.

[5] FaceDetection using Haar Feature-based Cascade

Classifiers in OpenCV. Online technical

documentation. Available at

https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face

_detection.html.

[6] Ping Hsin Lee, Vivek Srinivasan, and Arvind

Sundararajan. Face Detection, Final Year Project,

Stanford University, 2014.

[7] Local Binary Pattern Histograms in OpenCV (Open

Source Computer Vision Library) Online technical

documentation. Available at

https://docs.opencv.org/2.4/modules/contrib/doc/face

rec/facerec_tutorial.html#local-binary-patterns-

histograms-in-opencv.

[8] Detect Multi Scale Function in OpenCV (Open

Source Computer Vision Library). Online technical

documentation. Available at

https://docs.opencv.org/trunk/d1/de5/classcv_1_1Cas

cadeClassifier.html.

[9] Corona virus disease (COVID-19) advice for the

public: When and how to use masks:
https://www.who.int/emergencies/diseases/novelcoro

navirus-2019/advice-for-public/when-and-how-to

use-masks.

[10] Centers for disease control and prevention (CDC) an

article on How to protect yourself & others:
https://www.cdc.gov/coronavirus/2019-ncov/prevent-

getting-sick/prevention.html.

http://www.ijreat.org/
http://www.prdg.org/
https://circuitdigest.com/users/aswinth-raj

